13522 measured reflections

 $R_{\rm int} = 0.065$

2318 independent reflections

1422 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 4-nitrophenylacetate

Ji Li, Jun Liu and Hui-Qing Peng*

College of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, People's Republic of China Correspondence e-mail: lj80829@yahoo.com.cn

Received 19 November 2007; accepted 8 December 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.006 Å; R factor = 0.050; wR factor = 0.122; data-to-parameter ratio = 8.5.

In the asymmetric unit of the title compound, $C_{10}H_{11}NO_4$, there are two crystallographically independent molecules, which are connected *via* a C-H···O hydrogen bond. The crystal structure is stabilized by this hydrogen bond together with an N-O··· π contact [O···*Cg* 3.297 (5) Å; *Cg* is the centroid of one of the benzene rings].

Related literature

For related literature, see: Brown *et al.* (2006); Shokat *et al.* (1991); Sagamihara (1988).

Experimental

Crystal data

C10H11NO4
$M_r = 209.20$
Orthorhombic, Pca2
a = 15.9132 (13) Å
b = 5.2298 (4) Å
c = 24.878 (2) Å

V = 2070.4 (3) Å ³
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.11 \text{ mm}^{-1}$
T = 292 (2) K
$0.40 \times 0.04 \times 0.02 \text{ mm}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2001) $T_{\min} = 0.959, T_{\max} = 0.998$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	1 restraint
$wR(F^2) = 0.122$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.13 \ {\rm e} \ {\rm \AA}^{-3}$
2318 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$
273 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$\overline{D-\mathrm{H}\cdots A}$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C6-H6···O5	0.93	2.47	3.186 (6)	134

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2001); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the teachers of the College of Chemistry of Central China Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2259).

References

- Brown, J., Pawar, D. M., Fronczek, F. R. & Noe, E. A. (2006). Acta Cryst. C62, 0628–0630.
- Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sagamihara, H. M. (1988). US Patent 4 720 506.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shokat, K. M., Ko, M. K., Scanlan, T. S., Kochersperger, L., Yonkovich, S., Thaisrivongs, S. & Schultz, P. G. (1991). Angew. Chem. Int. Ed. Engl. 29, 1296–1303.

Acta Cryst. (2008). E64, o443 [doi:10.1107/S1600536807066184]

Ethyl 4-nitrophenylacetate

J. Li, J. Liu and H.-Q. Peng

Comment

Ethyl 4-nitrophenylacetate, (I), has been widely used as an intermediator of the anti-rheumatoid drugs (Kevan *et al.*, 1991; Sagamihara, 1988). The similar compound, cyclodecyl 4-nitrophenylacetate, has been reported by Brown *et al.* (2006). Here we present the molecular structure of (I), as shown in Fig. 1. In the asymmetric unit of (I), there is a dimer *via* a C—H···O interaction (Table 1). The angles involving the acetate groups in the dimer are 126.7 (4), 124.0 (4), 126.1 (4) and 123.1 (4)°, and the average distances of C=O and C—O are 1.202 (5) and 2.792 (5) Å, respectively. The C—N bond lengths on the benzene ring range from 1.202 (5) to 1.219 (4) Å. The benzene ring planes of the two independent molecules are nearly directional parallel with the dihedral angle of 19.2 (2)°, but no significant π - π interaction. The molecular packing diagram of (I) is stabilized by N1—O2··· π contact [O2··· Cg^i 3.297 (5) Å, N1—O2··· Cg^i 156.3 (3)°; Cg is the centroid of the benzene C11—C16 ring; symmetry code: (i) 1/2 + x, 1 - y, z] together with hydrogen bond, as shown in Fig. 2.

Experimental

Ethyl 4-nitrophenylacetate was obtained from the Jiachen Chemical Company Inc, ShangHai. The crystals were grown by vapour diffusion of 95% ethanol.

Refinement

After their location in a difference map, all H atoms were fixed geometrically at ideal positions (C–H = 0.93–0.96 Å) and allowed to ride on the parent C atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figures

Fig. 1. The asymmetric unit of the title compound with the atom numbering, showing displacement ellipsoids at the 50% probability level. The hydrogen bond is shown as a dashed line.

Fig. 2. The molecular packing diagram of the title compound, with hydrogen bonds shown as dashed lines.

Ethyl 4-nitrophenylacetate

Crystal data	
C ₁₀ H ₁₁ NO ₄	$F_{000} = 880$
$M_r = 209.20$	$D_{\rm x} = 1.342 {\rm ~Mg~m}^{-3}$
Orthorhombic, <i>Pca</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 1377 reflections
<i>a</i> = 15.9132 (13) Å	$\theta = 2.7 - 20.9^{\circ}$
<i>b</i> = 5.2298 (4) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 24.878 (2) Å	T = 292 (2) K
V = 2070.4 (3) Å ³	Plate, colorless
Z = 8	0.40 imes 0.04 imes 0.02 mm

Data collection

Bruker SMART CCD area-detector diffractometer	2318 independent reflections
Radiation source: fine-focus sealed tube	1422 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.065$
T = 292(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2001)	$h = -15 \rightarrow 20$
$T_{\min} = 0.959, \ T_{\max} = 0.998$	$k = -6 \rightarrow 6$
13522 measured reflections	$l = -31 \rightarrow 31$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H-atom parameters constrained
$wR(F^2) = 0.122$	$w = 1/[\sigma^2(F_o^2) + (0.0579P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.004$

2318 reflections273 parameters

 $\Delta \rho_{max} = 0.13 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.14 \text{ e } \text{\AA}^{-3}$

1 restraint

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic o	r equivalent	isotropic	displacement	parameters	$(Å^2$	')
				1	1	1	1	1	1	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	1.1982 (2)	1.1755 (8)	0.18201 (15)	0.0473 (10)
C2	1.1806 (3)	1.3761 (8)	0.14828 (17)	0.0556 (11)
H2	1.2230	1.4856	0.1368	0.067*
C3	1.0991 (3)	1.4122 (8)	0.13180 (17)	0.0559 (11)
Н3	1.0864	1.5479	0.1091	0.067*
C4	1.0354 (3)	1.2492 (8)	0.14854 (17)	0.0521 (10)
C5	1.0559 (3)	1.0479 (8)	0.1821 (2)	0.0578 (12)
Н5	1.0139	0.9359	0.1930	0.069*
C6	1.1363 (3)	1.0091 (8)	0.1995 (2)	0.0579 (13)
H6	1.1492	0.8744	0.2225	0.069*
C7	0.9459 (3)	1.2913 (9)	0.13058 (18)	0.0629 (13)
H7A	0.9096	1.2882	0.1619	0.076*
H7B	0.9415	1.4598	0.1145	0.076*
C8	0.9148 (3)	1.0963 (9)	0.09078 (17)	0.0527 (11)
C9	0.7949 (3)	0.9750 (9)	0.0399 (2)	0.0682 (15)
H9A	0.7939	0.8004	0.0531	0.082*
H9B	0.8261	0.9790	0.0064	0.082*
C10	0.7077 (3)	1.0715 (12)	0.0316 (2)	0.0842 (17)
H10A	0.6768	1.0582	0.0646	0.126*
H10B	0.6805	0.9713	0.0043	0.126*
H10C	0.7097	1.2471	0.0204	0.126*
C11	0.9635 (2)	0.3428 (7)	0.32274 (15)	0.0467 (10)
C12	0.9473 (3)	0.1331 (8)	0.35509 (17)	0.0541 (11)
H12	0.9903	0.0220	0.3649	0.065*
C13	0.8662 (3)	0.0924 (8)	0.37249 (18)	0.0556 (11)
H13	0.8547	-0.0456	0.3949	0.067*
C14	0.8017 (2)	0.2530 (8)	0.35717 (15)	0.0469 (10)

C15	0.8203 (3)	0.4571 (9)	0.3234 (2)	0.0570 (12)
H15	0.7772	0.5645	0.3122	0.068*
C16	0.9012 (2)	0.5043 (8)	0.30617 (19)	0.0501 (12)
H16	0.9131	0.6424	0.2839	0.060*
C17	0.7135 (2)	0.2026 (8)	0.37470 (17)	0.0561 (11)
H17A	0.7108	0.0337	0.3908	0.067*
H17B	0.6774	0.2020	0.3433	0.067*
C18	0.6801 (3)	0.3948 (8)	0.41442 (17)	0.0494 (10)
C19	0.5597 (3)	0.5179 (9)	0.4642 (2)	0.0631 (14)
H19A	0.5581	0.6910	0.4503	0.076*
H19B	0.5909	0.5186	0.4977	0.076*
C20	0.4726 (3)	0.4214 (11)	0.4734 (2)	0.0776 (15)
H20A	0.4414	0.4300	0.4404	0.116*
H20B	0.4455	0.5249	0.5002	0.116*
H20C	0.4749	0.2474	0.4856	0.116*
N1	1.2850 (2)	1.1303 (8)	0.19950 (16)	0.0625 (10)
N2	1.0504 (2)	0.3938 (8)	0.30557 (16)	0.0594 (10)
01	1.3401 (2)	1.2661 (7)	0.18162 (16)	0.0868 (11)
O2	1.2991 (2)	0.9635 (9)	0.23154 (18)	0.1051 (16)
O3	0.95456 (18)	0.9271 (7)	0.07121 (13)	0.0671 (10)
O4	0.83388 (17)	1.1435 (6)	0.07940 (12)	0.0630 (8)
O5	1.0631 (2)	0.5766 (7)	0.27657 (17)	0.0878 (12)
O6	1.1065 (2)	0.2546 (7)	0.32154 (15)	0.0766 (10)
O7	0.71909 (18)	0.5709 (6)	0.43392 (14)	0.0685 (9)
O8	0.59970 (17)	0.3485 (6)	0.42567 (12)	0.0607 (8)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.049 (2)	0.048 (2)	0.045 (2)	0.0003 (19)	0.0007 (19)	-0.0029 (18)
C2	0.064 (3)	0.048 (3)	0.055 (2)	-0.012 (2)	0.006 (2)	0.002 (2)
C3	0.069 (3)	0.043 (2)	0.055 (3)	0.001 (2)	-0.006 (2)	0.003 (2)
C4	0.061 (3)	0.041 (2)	0.054 (2)	0.003 (2)	0.003 (2)	-0.008 (2)
C5	0.054 (3)	0.049 (3)	0.070 (3)	-0.004 (2)	0.004 (2)	0.004 (2)
C6	0.055 (3)	0.051 (3)	0.068 (4)	-0.003 (2)	0.008 (2)	0.005 (2)
C7	0.053 (3)	0.054 (3)	0.082 (4)	0.008 (2)	-0.004 (2)	-0.011 (2)
C8	0.053 (3)	0.055 (3)	0.050 (2)	0.008 (2)	0.003 (2)	0.001 (2)
C9	0.069 (3)	0.072 (4)	0.064 (4)	-0.007 (3)	-0.014 (3)	-0.010 (2)
C10	0.065 (4)	0.104 (4)	0.083 (4)	0.001 (3)	-0.020 (3)	-0.006 (3)
C11	0.046 (2)	0.047 (2)	0.047 (2)	0.0012 (19)	-0.0004 (18)	-0.0049 (18)
C12	0.055 (3)	0.049 (3)	0.058 (2)	0.002 (2)	-0.002 (2)	0.005 (2)
C13	0.064 (3)	0.046 (3)	0.057 (3)	-0.001 (2)	0.010 (2)	0.007 (2)
C14	0.050 (3)	0.040 (2)	0.050 (2)	-0.004 (2)	0.0009 (19)	-0.0081 (19)
C15	0.047 (3)	0.058 (3)	0.066 (3)	0.004 (2)	-0.002 (2)	-0.002 (2)
C16	0.066 (3)	0.047 (3)	0.037 (2)	-0.002 (2)	0.003 (2)	0.0023 (17)
C17	0.057 (3)	0.048 (3)	0.063 (3)	-0.007 (2)	0.006 (2)	-0.007 (2)
C18	0.048 (3)	0.044 (3)	0.056 (3)	0.003 (2)	0.004 (2)	0.001 (2)
C19	0.057 (3)	0.077 (4)	0.056 (3)	0.002 (2)	0.007 (2)	-0.004 (2)

C20	0.066 (3)	0.096 (4)	0.071 (3)	-0.001 (3)	0.013 (3)	-0.001 (3)
N1	0.061 (3)	0.069 (3)	0.058 (2)	-0.008 (2)	-0.002 (2)	0.003 (2)
N2	0.052 (2)	0.065 (3)	0.061 (2)	0.001 (2)	0.0045 (19)	0.001 (2)
O1	0.059 (2)	0.094 (3)	0.107 (3)	-0.0180 (19)	-0.0037 (19)	0.018 (2)
O2	0.077 (3)	0.126 (3)	0.112 (4)	-0.001 (2)	-0.013 (2)	0.061 (3)
O3	0.059 (2)	0.067 (2)	0.076 (3)	0.0100 (17)	-0.0050 (16)	-0.023 (2)
O4	0.0493 (18)	0.066 (2)	0.074 (2)	0.0083 (15)	-0.0097 (15)	-0.0110 (16)
O5	0.072 (2)	0.087 (3)	0.104 (3)	-0.0159 (19)	0.015 (2)	0.041 (2)
O6	0.055 (2)	0.081 (3)	0.094 (2)	0.0124 (17)	0.0080 (18)	0.007 (2)
O7	0.066 (2)	0.062 (2)	0.078 (2)	-0.0127 (15)	0.0025 (16)	-0.0180 (19)
O8	0.0560 (18)	0.065 (2)	0.0611 (17)	-0.0103 (15)	0.0146 (15)	-0.0113 (16)

Geometric parameters (Å, °)

C1—C2	1.372 (6)	C11—N2	1.471 (5)
C1—C6	1.385 (5)	C12—C13	1.378 (5)
C1—N1	1.468 (5)	C12—H12	0.9300
C2—C3	1.373 (5)	C13—C14	1.380 (5)
С2—Н2	0.9300	С13—Н13	0.9300
C3—C4	1.388 (6)	C14—C15	1.390 (6)
С3—Н3	0.9300	C14—C17	1.494 (5)
C4—C5	1.382 (6)	C15—C16	1.380 (6)
C4—C7	1.510 (5)	C15—H15	0.9300
C5—C6	1.366 (6)	С16—Н16	0.9300
С5—Н5	0.9300	C17—C18	1.506 (6)
С6—Н6	0.9300	C17—H17A	0.9700
С7—С8	1.505 (6)	С17—Н17В	0.9700
С7—Н7А	0.9700	C18—O7	1.212 (5)
С7—Н7В	0.9700	C18—O8	1.332 (5)
C8—O3	1.192 (5)	C19—O8	1.452 (6)
C8—O4	1.341 (5)	C19—C20	1.493 (6)
С9—О4	1.458 (5)	C19—H19A	0.9700
C9—C10	1.491 (5)	С19—Н19В	0.9700
С9—Н9А	0.9700	C20—H20A	0.9600
С9—Н9В	0.9700	C20—H20B	0.9600
C10—H10A	0.9600	С20—Н20С	0.9600
C10—H10B	0.9600	N1—O2	1.202 (5)
C10—H10C	0.9600	N1—O1	1.212 (4)
C11—C16	1.365 (5)	N2—O5	1.215 (5)
C11—C12	1.385 (6)	N2—O6	1.219 (4)
C2—C1—C6	121.8 (4)	C11—C12—H12	120.7
C2—C1—N1	119.8 (4)	C12—C13—C14	121.0 (4)
C6—C1—N1	118.4 (4)	C12—C13—H13	119.5
C3—C2—C1	118.7 (4)	C14—C13—H13	119.5
С3—С2—Н2	120.6	C13—C14—C15	118.4 (4)
C1—C2—H2	120.6	C13—C14—C17	120.7 (4)
C2—C3—C4	121.0 (4)	C15—C14—C17	120.8 (4)
С2—С3—Н3	119.5	C16—C15—C14	121.6 (4)
С4—С3—Н3	119.5	C16—C15—H15	119.2

C5—C4—C3	118.4 (4)	C14—C15—H15	119.2
C5—C4—C7	120.8 (4)	C11—C16—C15	118.2 (4)
C3—C4—C7	120.7 (4)	C11—C16—H16	120.9
C6—C5—C4	121.7 (4)	C15—C16—H16	120.9
С6—С5—Н5	119.1	C14—C17—C18	113.9 (3)
C4—C5—H5	119.1	C14—C17—H17A	108.8
C5—C6—C1	118.2 (4)	C18—C17—H17A	108.8
С5—С6—Н6	120.9	C14—C17—H17B	108.8
С1—С6—Н6	120.9	C18—C17—H17B	108.8
C8—C7—C4	114.0 (3)	H17A—C17—H17B	107.7
С8—С7—Н7А	108.8	O7—C18—O8	123.1 (4)
С4—С7—Н7А	108.8	O7—C18—C17	126.1 (4)
С8—С7—Н7В	108.8	O8—C18—C17	110.8 (4)
С4—С7—Н7В	108.8	O8—C19—C20	107.6 (4)
Н7А—С7—Н7В	107.7	O8—C19—H19A	110.2
O3—C8—O4	124.0 (4)	C20—C19—H19A	110.2
O3—C8—C7	126.7 (4)	O8—C19—H19B	110.2
O4—C8—C7	109.3 (4)	C20—C19—H19B	110.2
O4—C9—C10	106.5 (4)	H19A—C19—H19B	108.5
O4—C9—H9A	110.4	C19—C20—H20A	109.5
С10—С9—Н9А	110.4	C19—C20—H20B	109.5
O4—C9—H9B	110.4	H20A—C20—H20B	109.5
С10—С9—Н9В	110.4	C19—C20—H20C	109.5
Н9А—С9—Н9В	108.6	H20A—C20—H20C	109.5
C9—C10—H10A	109.5	H20B—C20—H20C	109.5
C9—C10—H10B	109.5	O2—N1—O1	122.3 (4)
H10A—C10—H10B	109.5	O2—N1—C1	119.2 (4)
C9—C10—H10C	109.5	O1—N1—C1	118.5 (4)
H10A—C10—H10C	109.5	O5—N2—O6	122.8 (4)
H10B-C10-H10C	109.5	O5—N2—C11	118.1 (4)
C16—C11—C12	122.0 (4)	O6—N2—C11	119.1 (4)
C16—C11—N2	118.8 (4)	C8—O4—C9	116.1 (3)
C12—C11—N2	119.1 (4)	N2—O5—H6	155.7
C13—C12—C11	118.6 (4)	C18—O8—C19	116.7 (3)
C13—C12—H12	120.7		
C6—C1—C2—C3	0.3 (6)	N2-C11-C16-C15	-178.7 (4)
N1—C1—C2—C3	179.0 (3)	C14-C15-C16-C11	0.6 (6)
C1—C2—C3—C4	-0.3 (6)	C13-C14-C17-C18	110.9 (4)
C2—C3—C4—C5	-0.4 (6)	C15-C14-C17-C18	-71.5 (5)
C2—C3—C4—C7	179.5 (4)	C14—C17—C18—O7	-3.5 (6)
C3—C4—C5—C6	1.1 (7)	C14—C17—C18—O8	176.0 (3)
C7—C4—C5—C6	-178.9 (4)	C2-C1-N1-O2	175.6 (5)
C4—C5—C6—C1	-1.0 (7)	C6—C1—N1—O2	-5.7 (6)
C2—C1—C6—C5	0.3 (7)	C2-C1-N1-O1	-3.2 (6)
N1-C1-C6-C5	-178.4 (4)	C6—C1—N1—O1	175.5 (4)
С5—С4—С7—С8	-71.4 (5)	C16—C11—N2—O5	-1.0 (6)
C3—C4—C7—C8	108.6 (4)	C12—C11—N2—O5	179.0 (4)
C4—C7—C8—O3	-3.9 (7)	C16—C11—N2—O6	177.9 (4)
C4—C7—C8—O4	177.1 (4)	C12-C11-N2-O6	-2.2 (6)

C16 C11 C12 C12	-22(6)	03 C8 04 C0	-0.0 (6)		
010-011-012-013	-2.3 (0)	03-03-04-04	-0.9(0)		
N2-C11-C12-C13	177.7 (4)	C7—C8—O4—C9	178.2 (4)		
C11—C12—C13—C14	1.5 (6)	C10—C9—O4—C8	-176.9 (4)		
C12-C13-C14-C15	0.3 (6)	O6—N2—O5—H6	0.9		
C12-C13-C14-C17	177.9 (4)	C11—N2—O5—H6	179.7		
C13-C14-C15-C16	-1.4 (6)	O7—C18—O8—C19	-1.4 (6)		
C17-C14-C15-C16	-179.0 (4)	C17—C18—O8—C19	179.1 (4)		
C12-C11-C16-C15	1.3 (6)	C20-C19-O8-C18	-176.3 (4)		
Hydrogan bond gapmater $(\hat{\lambda} \circ)$					
Trydrogen-bond geometry (A,)					

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
С6—Н6…О5	0.93	2.47	3.186 (6)	134

